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The static first hyperpolarizability tensor of modelall-trans-polymethineimine oligomers has been computed
ab initio as a function of chain length using the coupled Hartree-Fock method with the 6-31G basis. Careful
extrapolations were carried out to obtain reliable infinite polymer values per unit cell. For the most realistic
structure the longitudinal component is about 4 times larger than any other and is of the same order of magnitude
as in push-pull polyenes. A plot of this component vs chain length exhibits a characteristic “dromedary
back” shape. The role of bond alternation and heteroatomicity in determining this shape through their effect
on the electronic delocalization and two different types of asymmetry (backbone, chain end) is examined
qualitatively as well as quantitatively. It is shown that the correct chain length dependence is not reproduced
by the uncoupled Hartree-Fock approximation.

1. Introduction

Quantum chemistry can play a crucial role in the design of
new materials for nonlinear optics (NLO) applications.1-3 The
computation of NLO properties, as well as their interpretation
in terms of chemical structure-property relationships, provides
an efficient means for directing synthetic efforts. Many
theoretical papers have addressed the first hyperpolarizability,
â, of organic molecules. This molecular property, responsible
for the dc-Pockels effect and the second harmonic generation,
has been evaluated for a wide range of molecules of potential
interest for NLO applications. It has been shown that a large
first hyperpolarizability can result from combining donor and
acceptor groups separated by a conjugated linker. Many donors
and acceptors have been tested as well as different types of
linkers.4-13 For most of these systems, the two-state approxi-
mation2,14-15 appears to correctly reproducetrendsin the first
hyperpolarizability upon substitution and/or upon modification
of the linker. This is because the first-order nonlinear response
is often due primarily to a single charge-transfer excited state.
The interplay between the strength of the donor-acceptor pair,
the length of the linker, and the polarity of the solvent open
many directions for tuning the linear and nonlinear re-
sponse.11-13,16-20 A simple model based on the simulation of
solvent and donor-acceptor effects by a uniform external
electric field has been used to give a unified description of the
linear and nonlinear response in this class of molecules.16-19

On the other hand, there have been only a few studies of the
first hyperpolarizabilities in oligomeric or polymeric chains. This
is because most of the systems considered21-22 are centrosym-
metric which implies a zeroâ value. To our knowledgeâ has
been obtained only for polymethineimine (PMI)23-25 and
polyaniline26 chains and, in those cases, only at an empirical or

semiempirical level. Albertet al.23 treated smallall-trans-PMI
chains (2-5 unit cells) within the Pariser-Parr-Pople (PPP)
scheme. Their longitudinalâ values are larger than the NLO
responses of push-pull polyenes with a push-pull strength of
1.0 eV. The size-dependence relationâ ) cN3.04obtained from
these oligomeric results (N is the number of unit cells andc is
a constant) suggested that the asymptotic linear evolution with
respect to chain length would be slowly attained. Using the
perturbative expansion of the density matrix (PEDM) method
and a PPP treatment, Saleset al.26 have shown that the
longitudinal first hyperpolarizability of polyaniline oligomers
strongly increases upon going from the totally reduced or
leucoemeraldine form to the fully oxidized or pernigraniline
form. Unfortunately, their study did not involve sufficiently
large oligomers to address the chain length dependence.
Although the above results are only of a suggestive nature, it is
still surprising that the substantial first hyperpolarizability
computed by Albertet al.23 and Saleset al.26 has not yet given
rise to experimental investigations of these noncentrosymmetric
conjugated organic polymers.
Recently, we began a comprehensive study of the first

hyperpolarizability of the PMI. This polymer, which was
synthesized a quarter of a century ago,27-28 may also be
considered as a model for other analogous heteroatomic systems.
Initially, Hückel calculations of the static longitudinal compo-
nent per unit cell,∆âzzz, were carried out for finite and infinite
chains.24 The evolution with chain length of∆âzzz shows a
maximum for short chains and then decreases until the
asymptotic value is reached. By varying the Hu¨ckel parameters
it was shown that increasing the bond alternation reduces∆âzzz
at the maximum and leads to a more rapid convergence to the
asymptotic limit. The rate of convergence increases with
heteroatomicity as well. An increase in the latter also results
in a more rapid attainment of the maximum in∆âzzzas a function
of chain length. We have explained the behavior of∆âzzz
qualitatively in terms of the antagonistic effects of either the
heteroatomicity or the bond alternation upon the delocalization
of the electron distribution and its asymmetry. There is always
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a limiting factor, either the electron delocalization or the
asymmetry, which depends not only upon the relative hetero-
atomicity and bond alternation values but also upon the chain
length.
Since the Coulombic interactions are not explicitly taken into

account in the Hu¨ckel approach, all levels of approximation are
reduced to the uncoupled Hartree-Fock (UCHF) scheme. In
the second paper of the series25 we used PPP Hamiltonians to
incorporate the field-induced electron reorganization effects by
means of the coupled Hartree-Fock (CHF) method. Two
different PPP parametrizations were employed. The more
realistic one corresponds to greater delocalization. It yields the
same “dromedary back” shape for the plot of∆âzzz vs chain
length as the Hu¨ckel calculation but gives a large negative (!)
longitudinal first hyperpolarizability in the asymptotic limit (the
other in-plane components are much smaller in magnitude). The
corresponding PPP/UCHF calculation reproduces the shape of
the curve but leads to a limiting value of∆âzzzthat is close to
zero. A satisfactory explanation of the behavior in the vicinity
of the maximum is provided by a new UCHF sum-over-states
approximation scheme, although the latter fails just like the
conventionalN-level treatment at longer chain lengths. In this
new scheme, the two largest terms are of opposite sign; the
negative one is smaller in amplitude for the shortest chains but
increases more rapidly with chain length thereby producing a
maximum. The failure of either approach for long chains may
be attributed to the fact that many excitations contribute
substantially to the first hyperpolarizability since each unit cell
contains one donor and one acceptor group and constitutes, at
the same time, a part of the conjugated segment.
The presentab initio study is the third step in our investigation

of the static first hyperpolarizability of polymethineimine chains.
Although the PPP method can, sometimes, mimic trends inab
initio calculations, there are often substantial quantitative
discrepancies as we find here. As in the PPP treatment, we
examine the chain length dependence of the various tensor
components within the CHF scheme. A careful extrapolation
procedure, using stability criteria, is carried out to yield reliable
asymptotic limits. The nonmonotonic dependence of∆âzzz(N)
uponN is quantitatively related to the electronic delocalization
along the chain and the asymmetry of the system using new
fitting functions. For this component we make a comparison
between the UCHF and CHF approaches. An interpretation of
our results follows a brief description of the methodology and
precedes a concluding section on future directions.

2. Methodology

Calculations of theâ tensor were carried out on increasingly
large PMI chains built from the repetition in one-direction of
the same structural unit (Figure 1). A set of Hartree-Fock
6-31G29 geometrical parameters defining the unit cell was

obtained by optimization ofall-trans-PMI chains of increasing
size using the Gaussian 9230 program. In order to maintain the
one-dimensional extension of the chains, we have used a model
in which the CNC and NCN bond angles are equal. Without
some constraints, complete geometry optimization of the all-
trans conformers would lead to bent structures because of the
stronger electrostatic repulsion between the nitrogen lone pairs
than between the CH bonds. It is important to note that the
bending can, in principle, be modified and even inverted when
the hydrogen atoms are replaced by methyl, phenyl, ... groups.
As in the work of Albertet al.,23 where linearity has been
assumed, these conformational effects are left for further
investigation.
It turns out that the chain length dependence of the PMI

geometrical parameters is larger31 than for polyacetylene32 and
is due to the polarity of the unit cell. We have chosen the
parameters of the central unit cell of the octamer as the building
block for constructing what we call structure B. The resulting
unit cell parameters closely mimic the infinite chain geometry.
In this case, the bond length alternation value∆r, given by the
bond length difference between the N-C single bond and the
CdN double bond, equals 0.126 Å.
In order to address the effects of bond length alternation on

the chain length dependence ofâ we have artificially built
several other homologous series of PMI chains based on
modified CdN and N-C bond lengths, with the other param-
eters, including the unit cell length, being held nearly constant.
The resulting geometries are displayed in Table 1 with the
different structures characterized by the letter A, B, C, D, and
E corresponding to∆r ) 0.100, 0.126, 0.150, 0.190, and 0.220
Å, respectively. In this way we simulate (AB)N chains
presenting different bond length alternation which could, in
principle, be obtained upon various chemical substitutions. No
simulation of the change in heteroatomicity due to possible
substitutions along the backbone were attempted.
The response of a molecule to an homogeneous static electric

field FB can be represented by either of the following two
expansions:

whereE0 is the energy of the molecule in the absence of the
electric field, µb0 is the permanent dipole moment,R5 is the
electric dipole polarizability, andâB6 and γ55 are the first and
second electric dipole hyperpolarizabilities, respectively. Both
series have equal coefficients within variational approximation
schemes such as the Hartree-Fock (HF) approach and, there-
fore, the first hyperpolarizability tensor is

Figure 1. Structure of the PMI chains, which are oriented so that the
line connecting the midpoint of the CdN bonds is parallel to thez
axis.

TABLE 1: Geometrical Parameters of the PMI Unit Cells
Used To Build the Oligomersa

A B C D E

RCdN 1.280 1.264 1.255 1.235 1.220
RN-C 1.380 1.390 1.405 1.425 1.440
RC-H 1.088 1.088 1.088 1.088 1.088
RCdNsC ) RNsCdN 120.2 120.2 120.2 120.2 120.2
RN-C-H 118.7 118.3 118.0 117.5 117.2
a 2.306 2.302 2.307 2.308 2.309
∆r 0.100 0.126 0.150 0.190 0.220

a Bond lengths are given in Å, bond angles in degrees,∆r ) RN-C
- RCdN is the bond length alternation and the other parameters are
defined in Figure 1.

E(FB) ) E0 - µb0‚FB - 1
2!

R5:FBFB -

1
3!

âB6lFBFBFB - 1
4!

γ55:
:FBFBFBFB - ... (1)

µb(FB) ) µb0 + R5‚FB + 1
2!

âB6:FBFB + 1
3!

γ55lFBFBFB + ... (2)
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Calculation of the dipole moment matrix and of the first
derivative of the LCAO matrix with respect to an external
electric field gives enough information to evaluate the CHF first
hyperpolarizability tensor. The first derivatives of the LCAO
matrix elements are obtained analytically by the coupled-
perturbed Hartree-Fock (CPHF) procedure33 which has been
implemented in the HONDO 95.3 program.34 This procedure
includes field-induced electron reorganizational effects self-
consistently in terms of the average Coulomb and Pauli
potentials. It is equivalent to the HF finite field technique and
to the time-dependent Hartree-Fock (TDHF) approach or the
random phase approximation (RPA) in the limit of zero
frequency.
From time-independent perturbation theory, the static first

hyperpolarizability tensor is given by35

whereΨ0 is the ground state wave function of energy E0, Ψj is
the jth excited state wave function of energyEj, µb is the dipole
moment operator and

The UCHF treatment is obtained by using Slater determinants
formed from Hartree-Fock orbitals as approximate wave
functions while the associated energy is taken to be the sum of
the energies of the orbitals in that determinant.36 In this
treatment, the field-induced effects on the electron-electron
interactions are not taken into account.37 Since the excitation
energies are given by the orbital energy difference between the
unoccupied and occupied one-electron levels, there is no
interaction between the excited electron going into the unoc-
cupied orbital and the hole left behind. This leads to an
overestimate of the excitation energies and often to an under-
estimate of the magnitude ofâB6. Within the UCHF scheme,
the SOS expression (4) may be transformed into a summation
over occupied (i, j) and unoccupied (a, b) levels which, for a
closed-shell system, takes the form

whereεx is the one-electron energy corresponding to the orbital
φx. The HONDO 95.334 program computes the UCHFâ by
following the algorithm of Fripiatet al.38 that involves a
straightforward use of the molecular orbitals and energies
calculated by the HF self-consistent field procedure.
In all our calculations we used a split-valence 6-31G atomic

basis set.29 This basis was found to be adequate in the
evaluation ofR andγ in medium and long polyacetylene (PA)
chains.39 For small donor/acceptor molecules such asp-NA2

and nitrobenzene,40 double-zeta quality basis sets have been
shown to yield first hyperpolarizabilities that are within about
20% of those obtained when polarization and diffuse functions
are added to the basis set. Since this discrepancy is expected
to diminish with increasing chain length39 we judge the 6-31G

basis to be adequate for our calculations except, perhaps, for
the smallest PMI chains.

3. Results and Interpretation

3.A. Evolution with Chain Length of the First Hyperpo-
larizability per Unit Cell and Extrapolation to the Infinite
Chain Limit. For all PMI structures we have calculatedâB6 for
chains ranging from the monomer to the eicosamer (20 CHdN
units). The nonzero tensor components obtained at the CHF/
6-31G level of approximation are listed in Tables 2 and 3 for
structures B and E. Table 4 listsâzzz for the A, C, and D
structures. For sufficiently long chains of structures B and E,
the longitudinal component,âzzz, is the largest. AtN ) 20 the
âxzzcomponent is smaller in magnitude by roughly a factor of
2 while the other components are essentially negligible. The
difference is even more pronounced (see below) when one
considers∆âzzzand∆âxzz. This predominance of the longitu-
dinal component is due to electron delocalization along the
chain. With the exception ofâzzz, andâxxz(for the E structure),
the â tensor components increase monotonically with chain
length. âzzz is negative initially, goes through a maximum as
N increases, and decreases continuously after that to a negative
value at long chain lengths. The maximum shifts steadily from
aboutN ) 7 in the A structure of PMI to betweenN ) 1 and
N ) 2 in the oligomers of structure E. For comparison, the
longitudinal component of the dipole moment is negative,
whatever the size and structure of the chain, and it grows
monotonically.
We are interested in the first hyperpolarizability per unit cell

as a function of chain length. Two different definitions are
commonly used for this quantity, both of which must lead to
the same asymptotic limit. For the most rapid convergence with
N we choose∆â(N) ) â(N) - â(N - 1) rather thanâ(N)/N.
Figures 2 and 3 show the evolution of∆âB6 with chain length
for the structures B and E (all nonzero tensor components);
Figure 4 shows theâzzz component for all five series. Two
different behaviors are observed: one for∆âzzzand one for all
the other components. The latter approach their asymptotic limit
monotonically. On the other hand,∆âzzz initially increases
toward a maximum and then decreases, becomes negative and,
finally, tends toward the polymeric value. The leveling off to
the asymptotic limit is slowest forâxzz and âzzz because the
electrons are delocalized primarily in the longitudinal (z)
direction. From Figure 4 we see that as the conjugation
increases (i.e. the bond alternation decreases) the maximum in
∆âzzz increases in height and shifts to largerN. At the same
time the approach to saturation is slower and the magnitude of
the limiting infinite chain value is larger. The saturation
behaviour of the individual structures is similar to that found
for the linear polarizability and second hyperpolarizability of
other conjugated polymers.32,39,41-44

In order to obtain the∆âzzzasymptotic limit, it is clear from
Figures 2-4 that an extrapolation is necessary. Three different
functional forms have been employed here for that purpose:

The 1/N power series (eq 6a) was originally proposed45 to fit
total and orbital energies of polyacetylene. It has been applied

âB6 ) -(∂3E(FB)
∂FB3 )

FB)0
) (∂2µb(FB)

∂FB2 )
FB)0

(3)

âB6 ) 6∑
j
∑
k

〈Ψ0|µb|Ψj〉〈Ψj|µb|Ψk〉〈Ψk|µb|Ψ0〉

(E0 - Ej)(E0 - Ek)
(4)

〈Ψj|µb|Ψk〉 ) 〈Ψj|µb|Ψk〉 - 〈Ψ0|µb|Ψ0〉δjk

âB6 ) 12∑
i,j

occ

∑
a

unocc〈φi| rb|φa〉〈φj| rb|φi〉〈φa| rb|φj〉
(εi - εa)(εj - εa)

-

12∑
i

occ

∑
a,b

unocc〈φi| rb|φa〉〈φa| rb|φb〉〈φb| rb|φi〉
(εi - εa)(εi - εb)

(5)

∆âzzz(N) ) a+ b
N

+ c

N2
(6a)

∆âzzz(N) ) a- be-cN (6b)

∆âzzz(N) ) a

1+ be-cN (6c)
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many times since then to fit the (hyper)polarizability per unit
cell (or its logarithm) of oligomeric chains.32,39,41,43 This
expression is supported by the fact that the total Hartree-Fock
energy per unit cell can formally be written as a power series
in 1/N.46 In recent work,44 it has been shown that the
exponential function in eq 6b leads to extrapolated linear
polarizabilities per unit cell that are in good agreement with
values obtained directly from crystal orbital calculations.
Finally, the right-hand side of the third fitting function (eq 6c)
is the solution of thelogistic equation47 which has been used
historically to describe the growth of a population that is limited
by food supply or other circumstances. Obviously, other forms
such as Pade´ approximants46 could be considered.
The set ofN values used in the least-squares fit of eqs 6a-c

is arbitrary as long as there are at least as many points as there
are parameters. It has recently been noted32 that this freedom
can be utilized to monitor the stability and, hence, the reliability
of the extrapolated result. In particular, one can define a
consecutive set of points by the maximumN (Nmax) and the

minimumN (Nmin) so thatNmax - Nmin ) k + p, wherek + 1
is the number of fitting parameters andp is the number of
degrees of freedom. For fixedk andNmax, an additional degree
of freedom is added each timeNmin is reduced by unity. In
this way one can determine the stability with respect to the size
of the shortest chain in the data set. In the case of eq 6a one
can also examine the stability with respect to varying the order
of the polynomial. The use of different fitting functions here
enables us to assess the accuracy of the asymptotic value.
Table 5 lists the extrapolated longitudinal first hyperpolar-

izability per unit cell obtained with differentNmax and p in
eqs 6a-c. In order to get a good least-squares fit, experi-
ence dictates that one should requirep g k, as we have done
here. Evidently, the polynomial fit (6a) is not very stable
compared to the other two functions with respect to varyingp
andNmax. We tried a cubic series in 1/N as well with similar
results. This simply means that for this particular property, and
this particular system, longer chains are needed to achieve good
precision.

TABLE 2: CHF/6-31G â Tensor Components of PMI Chains of Structure B as a Function of the Number of Unit Cells (N)

N âxxx âxxz âxzz âxyy âyyz âzzz

1 51.220 15.541 15.678 7.124 8.610 -10.25
2 94.947 9.445 59.774 10.733 20.999 15.45
3 131.331 9.808 144.964 15.314 37.878 81.67
4 167.511 14.406 279.036 20.133 57.704 182.23
5 203.859 24.398 461.720 25.127 79.648 276.10
6 240.633 39.871 687.546 30.239 103.101 308.18
7 277.901 60.346 948.724 35.432 127.618 229.59
8 315.633 85.091 1237.343 40.679 152.884 8.42
9 353.770 113.332 1546.587 45.961 178.679 -368.42
10 392.246 144.376 1871.101 51.268 204.853 -899.34
11 430.991 177.626 2206.763 56.590 231.302 -1573.55
12 469.959 212.620 2550.697 61.925 257.954 -2375.80
13 509.098 248.977 2900.688 67.268 284.759 -3289.25
14 548.374 286.406 3255.224 72.617 311.681 -4297.71
15 587.761 324.690 3613.196 77.970 338.690 -5386.20
16 627.234 363.649 3973.799 83.326 365.768 -6541.83
17 666.777 403.149 4336.438 88.686 392.901 -7753.50
18 706.377 443.089 4700.678 94.045 420.078 -9011.90
19 746.026 483.393 5066.258 99.408 447.289 -10309.23
20 785.709 523.980 5432.801 104.772 474.531 -11639.09

∆â(∞) 39.84( 0.02 41.76( 0.36 370.24( 1.17 5.37( 0.00 27.36( 0.04 -1461( 51

a In the last row we give the corresponding value per unit cell extrapolated to the infinite chain limit following the procedure described in the
text. All the values are in au (1.0 au) 3.206× 10-53 C3 m3 J-2 ) 8.641× 10-33 esu).

TABLE 3: CHF/6-31G â Tensor Components of PMI Chains of Structure E as a Function of the Number of Unit Cells (N)

N âxxx âxxz âxzz âxyy âyyz âzzz

1 53.176 16.040 13.783 6.566 7.698 -11.54
2 97.990 8.710 48.900 9.774 18.338 -11.66
3 134.680 5.126 105.307 13.706 32.229 -29.72
4 170.681 2.080 180.394 17.766 47.932 -75.74
5 206.261 -0.102 269.852 21.921 64.828 -157.56
6 241.651 -1.447 369.631 26.141 82.516 -275.10
7 276.950 -2.083 476.586 30.404 100.732 -428.83
8 312.208 -2.158 588.490 34.698 119.306 -610.54
9 347.445 -1.803 703.817 39.012 138.125 -815.97
10 382.672 -1.121 821.543 43.340 157.116 -1040.35
11 417.894 -0.193 940.977 47.678 176.230 -1279.64
12 453.112 0.924 1061.649 52.025 195.435 -1530.59
13 488.330 2.185 1183.243 56.376 214.706 -1790.68
14 523.545 3.556 1305.515 60.732 234.027 -2057.91
15 558.759 5.011 1428.312 65.090 253.387 -2330.77
16 593.972 6.537 1551.523 69.452 272.777 -2608.10
17 629.184 8.114 1675.049 73.815 292.192 -2889.01
18 664.394 9.734 1798.832 78.180 311.625 -3172.79
19 699.603 11.390 1922.823 82.547 331.076 -3458.90
20 734.811 13.074 2046.984 86.914 350.539 -3746.92

∆â(∞) 35.11( 0.10 1.79( 0.06 124.82( 0.19 4.37( 0.00 19.52( 0.02 -293.4( 2.0

a In the last row we give the corresponding value per unit cell extrapolated to the infinite chain limit following the procedure described in the
text. All the values are given in au (see Table 2 footnote for conversion to other units).
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However, the two other forms, and particularly eq 6b, are
much better behaved. SettingNmax) 20, the extrapolated values
for B structure obtained from eq 6b range between-1493 and
-1512 au forp) 2-7 with no jump between successive values

greater thanε ) (15 au. Applying the same stability criterion
to the extrapolations using eq 6c, the range is-1455 to-1410
au, forp ) 2-6. Thus, the fits for both functional forms are
consistent with∆âzzz(∞) ) -1461( 51 au which we take as
the asymptotic value. Note that this result is consistent (in the
region of stability) with the three sets of extrapolations for which
p is fixed andNmax is variable. It appears to be consistent as
well with trends in the polynomial fits. For structure E the
dependence uponNmaxandp is much weaker. Using a stability
criterion ofε ) (2.0 au, we find∆âzzz(∞) ) -293.4( 2.0 au.
Although the largest chain lengths already provide accurate

estimates of the polymeric values for the other∆â tensor
components of the chains of structures B and E, similar
procedures have been adopted. For structure B the magnitude
of the ratio∆âzzz(∞)/∆âxzz(∞) is 3.95 whereas for structure E it
is 2.35. The polymeric values of∆âx (âx ) âxxx+ âxyy+ âxzz)
and∆âz (âz ) âzxx+ âzyy+ âzzz) are 415.45( 1.19 and-1392
( 52 au, respectively, in the case of B structure PMI while
∆âx ) 164.30( 0.29 au and∆âz ) -272.1( 2.1 au in the
case of the E structure. The same approach has been followed
for estimating the∆âzzz(∞) values in the A-, C-, and D-structure
PMI (Table 4).
3.B. Role of Bond and Atomic Alternation in Determining

∆âzzz(N) vsN. Connection with Electronic Asymmetry and
Delocalization. By considering the behavior ofâzzz(N) as a
function of the degree of bond alternation and atomic alternation
(heteroatomicity) one can gain insight into the role of asymmetry
and electron delocalization in determining the chain length
dependence. From Figure 4 it is evident that the plot of∆âzzz-
(N) vs N becomes increasingly flat as the degree of bond
alternation increases. The smallest bond alternation produces

TABLE 4: CHF/6-31G âzzzof PMI Chains of Structure A,
C, and D as a Function of the Number of Unit Cells (N)

N A C D

1 -9.58 -10.30 -10.91
2 27.05 7.42 -4.18
3 139.49 44.22 -3.94
4 341.20 86.79 -23.79
5 590.47 101.79 -81.29
6 805.95 54.62 -187.30
7 896.43 -79.06 -344.95
8 786.11 -310.20 -551.55
9 426.55 -638.57 -801.38
10 -202.93 -1056.89 -1087.68
11 -1101.72 -1554.35 -1403.86
12 -2255.28 -2119.65 -1744.24
13 -3641.08 -2741.70 -2103.95
14 -5233.5 -3410.71 -2479.11
15 -7006.69 -4118.34 -2866.59
16 -8936.21 -4857.63 -3263.93
17 -10999.87 -5622.87 -3669.19
18 -13178.14 -6409.52 -4080.88
19 -15453.99 -7213.71 -4497.78
20 -17812.82 -8032.08 -4918.96
∆âzzz(∞) -2753( 129 -869( 28 -434( 7

a In the last row we give the corresponding value per unit cell
extrapolated to the infinite chain limit following the procedure described
in the text. All the values are given in au (see Table 2 caption for
conversion to other units).

Figure 2. Evolution with chain length of the CHF/6-31G first
hyperpolarizability per unit cell,∆âB6, of PMI chains of structure B.
The lower panel is a blow-up of the-20 to 60 au region.

Figure 3. Evolution with chain length of the CHF/6-31G first
hyperpolarizability per unit cell,∆â66, of PMI chains of structure E.

Figure 4. Bond length alternation effect on the chain length depen-
dence of the CHF/6-31G∆âzzzïf PMI chains.
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the highest maximum and the largest (in magnitude) asymptotic
value. We associate a decrease of bond alternation with an
increase in the electron delocalization. In addition, however,
the decrease in bond alternation is also associated with a
decrease in the asymmetry of the backbone. This can be seen
from ordinary Hückel24 calculations where theasymptotic
∆âzzz(∞) approaches zero as the two bond parameters approach
one another for fixed atomic alternancy. Presumably, such
behavior is not seen here because the bond alternancy is too
large even for structure A. Hu¨ckel calculations behave similarly
to theab initio ones for large bond alternancy in which one,
despite the large asymmetry,∆âzzz(∞) is small due to strong
electron localization.
The heteroatomicity, likewise, affects both the backbone (or

unit cell) asymmetry and the electron delocalization. Ordinary
Hückel calculations24 and recent CHF/6-31G investigations48

demonstrate that increasing the heteroatomicity (for fixed bond
length alternation) decreases the longitudinal linear polarizabil-
ity, which we interpret as being due to a decrease in electron
delocalization. On the other hand, the asymptotic longitudinal
first hyperpolarizability may either increase or decrease in
magnitude. If it decreases, then the electron localization is
dominant; if it increases, the asymmetry is dominant.
Besides the backbone asymmetry there is also a chain end

asymmetry. These two different types of asymmetry are
indicated most clearly by the data in Tables 2-4 which show
a reversal in the sign ofâzzz for oligomers of structures A-C
in the regionN) 7-10. The backbone asymmetry is dominant

for largerN while the chain end asymmetry is dominant for
smallerN. Of course, the chain end asymmetry would not exist
if there were no heteroatomicity; but when it does exist the bond
alternation will influence its magnitude as ordinary Hu¨ckel
calculations24 reveal.
As illustrated in Figure 4, the effect of increasing electron

delocalization is to magnify the hump in the dromedary back
curve of∆âzzz(N) vs N and to push the sign reversal to larger
N. Thus, the detailed shape of this curve arises from combined
effects of asymmetry and electron delocalization. This situation
is represented mathematically in the next section by writing the
hyperpolarizability per unit cell as a simple product of two
functions one representing the electron delocalization and the
other the asymmetry.
3.C. Quantitative Fit of the Longitudinal Hyperpolariz-

ability per Unit Cell vs Chain Length. It is of interest to
obtain a quantitative fit for the dependence of the longitudinal
hyperpolarizability per unit cell on chain length. To this end
we test the following two forms each of which is a simple
product of a delocalization function multiplied by an asymmetry
function:

We have chosen to fitâzzz(N)/N here, rather than∆âzzz(N), in
order to emphasize chain end asymmetry. The contribution of
chain ends is largely cancelled (see also below) in forming∆âzzz-
(N). In eqs 7a and 7b the quantity (1+ m5/N) is the asymmetry
function. Except for a proportionality factor the constant term
represents the backbone asymmetry while the 1/N term repre-
sents the chain end contribution. This assumes that the effect
of delocalization on both types of asymmetry is the same. It is
also assumed, for the sake of simplicity, that higher powers in
1/N can be omitted. Note that ifm5 is negative, then the
asymmetry gives rise to a sign reversal atN ) |m5|.
The delocalization function in eq 7a is the solution of the

logistic equation, which we have used previously in this paper
to describe the asymptotic (and near asymptotic) behavior of
∆âzzz(N). From the fact that this function is slowly varying at
largeN it is easy to show that the two usages of the logistic
equation (eqs 6c and 7a) are consistent with one another.
Furthermore, the shape of this function is appropriate for allN
since it qualitatively describes the complete chain length
dependence41 of both the linear polarizability and the second
hyperpolarizability of centrosymmetric oligomers (including the
possibility of a point of inflection). As a measure of the overall
delocalization effect we use the difference, DLOC, between the
value of the delocalization function atN ) ∞ and atN ) 1.
Since the value atN ) 1 turns out to be small compared to the
value atN ) ∞, DLOC is approximativelym1. The delocal-
ization or conjugation length which yields some specified
fraction of DLOC, is determined essentially bym2 andm3.
If m2 is positive, as it is here, then the delocalization function

will have the same sign for allN. Thus, eq 7a cannot reproduce
the sign reversal that occurs atN ) 1 for the A-C structures
of PMI. For this reason the pointN ) 1 is not included in the
data set used for the fitting.
The analysis of the delocalization function in eq 7b is similar

to the above. In this case DLOC is approximatelym1 + m2,
the electron delocalization effects are described bym2 as well
asm3 andm4, and the inflection point is determined bym3.
m1/m2 andm4 are associated with the amplitude and rate of the

TABLE 5: Extrapolated CHF/6-31G ∆âzzzValues Obtained
Using Three Different Analytical Forms for the Fitting
Function and a Variety of Data Sets

no. of
points data range

a+ (b/N)
+ (c/N2) a- be-cN a/(1+ be-cN)

Structure B
12 9-20 -2146 -1554 -1353
11 10-20 -2011 -1528 -1394
10 11-20 -1892 -1512 -1393
9 12-20 -1792 -1503 -1410
8 13-20 -1709 -1497 -1424
7 14-20 -1644 -1495 -1436
6 15-20 -1590 -1493 -1446
5 16-20 -1549 -1493 -1455
7 14-20 -1644 -1495 -1436
7 13-19 -1750 -1499 -1413
7 12-18 -1893 -1510 -1383
7 11-17 -2074 -1535 -1342
7 10-16 -2294 -1589 -1286
6 15-20 -1590 -1493 -1446
6 14-19 -1680 -1495 -1427
6 13-18 -1798 -1501 -1401
6 12-17 -1956 -1517 -1366
6 11-16 -2153 -1550 -1318
5 16-20 -1549 -1493 -1455
5 15-19 -1619 -1493 -1438
5 14-18 -1726 -1498 -1417
5 13-17 -1853 -1505 -1386
5 12-16 -2026 -1525 -1345

Structure E
12 9-20 -306.5 -294.5 -291.3
11 10-20 -303.9 -295.4 -292.9
10 11-20 -296.5 -295.2 -293.4
9 12-20 -291.2 -295.2 -293.8
8 13-20 -284.2 -294.9 -293.9
7 14-20 -271.6 -293.9 -293.2
6 15-20 -247.6 -292.2 -291.8
6 15-20 -247.6 -292.2 -291.8
6 14-19 -276.9 -294.6 -293.7
6 13-18 -318.4 -301.0 -298.7
6 12-17 -316.2 -298.7 -295.8
6 11-16 -303.0 -293.5 -290.2

a All values are given in au.

âzzz(N)

N
) [ m1

1+ m2e
-m3N](1+

m5

N ) (7a)

âzzz(N)

N
) [m1 + m2 tanh(N- m3

m4
)](1+

m5

N ) (7b)
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âzzz(N)/N variation with chain length, respectively. Although
m1 andm2 have the same sign, the delocalization function can
accommodate a change in sign at smallN because the tanh factor
varies in sign.
Figure 5 shows representative least-squares fits for the B

structure of PMI using the pointsN) 2-20. Reasonable results
are obtained for eq 7b but the fit of eq 7a is poor, particularly
in the vicinity of the maximum. Consequently, we do not
consider the latter any further. Fitting parameters obtained for
the five PMI structures using eq 7b are reported in Table 6. As
expected, DLOC is given quite accurately bym1 + m2. This
quantity decreases sharply with increasing bond alternation. In
addition, as the bond alternation increases the backbone asym-
metry increases markedly with respect to the chain end
asymmetry (1 vs|m5|) and the point of inflection (m3) moves
to significantly smallerN. m4 monotonically increases with the
bond length alternation showing that the rate of variation of
âzzz(N)/N vs N decreases concomitantly. On the other hand,

the conjugation length (defined to yield 90% of DLOC and,
therefore calledN90

c ) is essentially the same for each of the
structures. All of these features are consistent (as far as they
are applicable) with the discussion of the previous subsection.
They show also that eq 7b can be used quantitatively to describe
the electron delocalization and asymmetry effects on the chain
length behavior ofâzzz(N).
3.D. Uncoupled vs Coupled Hartree-Fock Approxima-

tions for ∆âzzz(N). We have applied the uncoupled Hartree-
Fock approximation to calculate∆âzzz(N) for the five PMI
structures. Figure 6 displays the∆âzzz(N) evolution with chain
length and a typical plot comparing UCHF/6-31G with CHF/
6-31G in the case of the B structure is shown as Figure 7.
Although UCHF does fairly well for small oligomers the chain
length dependence is not correct beyond the position of the
maximum; the UCHF curve is, clearly, much too flat. These
ab initio results confirm the general conclusion of our previous
PPP treatment25 based on the Tavan and Schulten parametriza-
tion. The lack of field-induced effects on the electron-electron
interactions in the UCHF calculations leads to the same results
as an increase of alternation,i.e. ∆âzzz(∞) is smaller and the
saturation with chain length is faster. Similar observations have
already been made for the linear polarizability.44 In addition,
the sign change in∆âzzz(N) occurs at much largerN, indicating
a description of the asymmetry overly biased toward the chain
end contribution.

4. Future Directions

PMI is an example of a polymer that has an asymmetric unit
cell and thereby exhibits a static longitudinal first hyperpolar-

Figure 5. Comparison of calculated CHF/6-31Gâzzz(N)/N vs N for
PMI chains of B structure with the curve obtained by a least-squares
fit to eqs 7a and 7b.

TABLE 6: Least-Squares Parameters for the Fit of Eq 7b
to the CHF/6-31Gâzzz(N)/N for PMI Chains of Structures
A-Ea

A B C D E

DLOC -1851 -1041 -645 -347 -228
N90
c 19 20 20 25 21

m1 + m2 -1830 -1022 -629 -326 -220
m1/m2 0.907 0.853 0.772 0.468 0.436
m3 11.5 10.8 10.0 7.4 6.2
m4 6.3 7.0 7.8 10.0 10.1
m5 -9.8 -7.9 -6.3 -3.3 -1.6

a The N ) 2-20 data have been utilized. The quantities DLOC
andN90

c are defined in the text. DLOC andm1 + m2 have units of first
hyperpolarizability (au) while all the other quantities are dimensionless.

Figure 6. Evolution with chain length of UCHF/6-31G∆âzzz as a
function of the bond length alternation.

Figure 7. Comparison between the UCHF and CHF values for the
evolution of the 6-31G∆âzzz(N) as a function of the chain length for
the B structure (∆r ) 0.126 Å) PMI chains.
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izability. Each unit cell contains the donor and the acceptor
while, at the same time, being part of the conjugated backbone
that generates a unique behavior for∆âzzz(N) vs N which
exhibits a “dromedary back” shape. The magnitude of∆âzzz-
(∞) is -1461 au per [CHdN] unit for the B structure, which is
the best representation of the all-trans stereoregular chain. This
is comparable to the values in standard push-pull systems. For
examples, CHF/6-31G calculations49 give âzzz) -4280 au for
NH2[CHdCH]3NO2 and-13750 au for NH2[CHdCH]5NO2,
or -1070 and-2292 au, respectively, per pair of backbone
atoms. Thus, PMI shows promise as an NLO material,
particularly when one considers the possibilities for tuning by
chemical substitution.
The calculations presented here constitute just the first step

in an ab initio investigation of the NLO properties of this
interesting polymer. Besides frequency dispersion, we have yet
to examine the role of electron correlation,50 or of the associated
choice of an atomic basis set, or of vibrational distortions,51 or
the interactions with the medium.22 Recent work has shown
that each of these phenomena can, individually, cause the
hyperpolarizability to change by a factor of 2-3 and, in some
cases, an order of magnitude. Of course, the crystal packing is
critical; if it is centrosymmetric then the first hyperpolarizability
will cancel out. Because of the polar nature of the unit cell
there is reason to believe that vibrations and interchain interac-
tions may be especially important as well.
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(27) Wöhrle, D.Tetrahedron Lett.1971, 22, 1969-1970.
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